ERLANG

wxErlang

Copyright © 2009-2022 Ericsson AB. All Rights Reserved.
wxErlang 2.1.4
October 5, 2022

Copyright © 2009-2022 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

October 5, 2022

1.1 wx the erlang binding of wxWidgets

1 wxErlang User's Guide

The wxErlang applicationis an api for writing graphical user interfaces with wxWidgets.

1.1 wx the erlang binding of wxWidgets

The wx application is an erlang binding of wxWidgets. This document describes the erlang mapping to wxWidgets
and it's implementation. It is not a complete users guide to wxWidgets. If you need that, you will have to read the
wxWidgets documentation instead. wx tries to keep a one-to-one mapping with the original APl so that the original
documentation and examples shall be as easy as possible to use.

wxErlang examples and test suite can be found in the erlang src release. They can also provide some help on how
to usethe API.

Thisiscurrently avery brief introduction to wx. The application is still under development, which means the interface
may change, and the test suite currently have a poor coverage ratio.

1.1.1 Contents

e Introduction

* Multiple processes and memory handling
e Event Handling

e Acknowledgments

1.1.2 Introduction

The original wxWidgets is an object-oriented (C++) APl and that is reflected in the erlang mapping. In most cases
each classin wxWidgets is represented as a module in erlang. This gives the wx application a huge interface, spread
over several modules, and it al starts with the wx module. The wx module contains functions to create and destroy
the GUI, i.e. wx: new 0, wx: dest r oy/ 0, and some other useful functions.

Objects or object references in wx should be seen as erlang processes rather than erlang terms. When you operate on
them they can change state, e.g. they are not functional objects as erlang terms are. Each object has a type or rather
aclass, which is manipulated with the corresponding module or by sub-classes of that object. Type checking is done
so that a module only operates on it's objects or inherited classes.

An object is created with new and destroyed with destroy. Most functions in the classes are named the same as their
C++ counterpart, except that for convenience, in erlang they start with alowercase letter and the first argument isthe
object reference. Optional arguments are last and expressed as tagged tuplesin any order.

For example the wxWindow C++ class is implemented in the wxWindow erlang module and the member
wxWindow:: Center OnPar ent is thus wxWindow: center OnPar ent. The following C++ code:

wxWindow MyWin = new wxWindow();
MyWin.CenterOnParent (wxVERTICAL);
delete MyWin;

would in erlang look like:

Ericsson AB. All Rights Reserved.: wxErlang | 1

1.1 wx the erlang binding of wxWidgets

MyWin = wxWindow:new(),
wxWindow: centerOnParent (MyWin, [{dir, ?wxVERTICAL}]),

wxWindow:destroy(MyWin),

When you are reading wxWidgets documentation or the examples, you will notice that some of the most basic classes
are missing in wx, they are directly mapped to corresponding erlang terms:

wxPoint is represented by { Xcoord,Y coord}

wxSizeis represented by { Width,Height}

wxRect is represented by { Xcoord,Y coord,Width,Height}
wxColour isrepresented by { Red,Green,Blue[,Alpha]}
wxPoint is represented by { Xcoord,Y coord}

wxString is represented by unicode:charlist()
wxGBPaosition is represented by { Row,Column}
wxGBSpan is represented by { RowSpan,ColumnSPan}
wxGridCellCoordsis represented by { Row,Column}

In the places where the erlang API differs from the original one it should be obvious from the erlang documentation
which representation has been used. E.g. the C++ arrays and/or lists are sometimes represented as erlang lists and
sometimes as tuples.

Colours are represented with { Red,Green,Blue[,Alpha]}, the Alpha value is optional when used as an argument to
functions, but it will always be returned from wx functions.

Defines, enumerations and global variables existsinwx. hr | as defines. Most of these defines are constants but not
all. Some are platform dependent and therefore the global variables must beinstantiated during runtime. These will be
acquired from the driver with a call, so not all defines can be used in matching statements. Class local enumerations
will be prefixed with the class name and a underscore asin Cl assNanme_Enum

Additionally some global functions, i.e. non-class functions, exist in thewx_m sc module.

wxErlang isimplemented as a (threaded) driver and arather direct interface to the C++ API, with the drawback that
if the erlang programmer does an error, it might crash the emulator.

Since the driver is threaded it requires a smp enabled emulator, that provides athread safe interface to the driver.

1.1.3 Multiple processes and memory handling

Theintention isthat each erlang application callswx:new() once to setup it's GUI which creates an environment and a
memory mapping. To be able to use wx from several processes in your application, you must share the environment.
You can get the active environment with wx: get _env/ 0 and set it in the new processes with wx: set _env/ 1.
Two processes or applications which have both called wx:new() will not be able use each others objects.

wx:new(),
MyWin = wxFrame:new(wx:null(), 42, "Example", [1),
Env = wx:get env(),
spawn(fun() ->
wx:set env(Env),
%% Here you can do wx calls from your helper process.

end),

When wx: dest r oy/ 0 isinvoked or when all processes in the application have died, the memory is deleted and all
windows created by that application are closed.

2 | Ericsson AB. All Rights Reserved.: wxErlang

1.1 wx the erlang binding of wxWidgets

Thewx application never cleansor garbage collects memory aslong asthe user applicationisaive. Most of the objects
are deleted when awindow is closed, or at least all the objects which have a parent argument that is non null. By using
WX CLASS: dest r oy/ 1 when possibleyou can avoid an increasing memory usage. Thisisespecially important when
wxWidgets assumes or recommends that you (or rather the C++ programmer) have allocated the object on the stack
since that will never be done in the erlang binding. For example wx DC class or its sub-classes or wxSi zer Fl ags.

Currently the dialogs show modal function freezes wxWidgets until the dialog is closed. That isintended but in erlang
where you can have several GUI applications running at the same time it causes trouble. Thiswill hopefully be fixed
in future wxWidgets releases.

1.1.4 Event Handling

Event handling in wx differs most from the original API. You must specify every event you want to handle in
wxWidgets, that is the same in the erlang binding but you can choose to receive the events as messages or handle
them with callback funs.

Otherwisethe event subscription is handled aswxWidgets dynamic event-handler connection. Y ou subscribeto events
of a certain type from objects with an 1D or within a range of 1Ds. The callback fun is optional, if not supplied the
event will be sent to the processthat called connect/2. Thus, ahandler isacallback fun or a process which will receive
an event message.

Eventsare handled in order from bottom to top, inthewidgets hierarchy, by thelast subscribed handler first. Depending
onif wxEvent : ski p() iscalled the event will be handled by the other handler(s) afterwards. Most of the events
have default event handler(s) installed.

Message events looks like #wx{id=integer(), obj=wx:wxObject(), userData=term(), event=Rec }. The id is the
identifier of the object that received the event. The obj field containsthe object that you used connect on. Theuser Data
field contains a user supplied term, thisis an option to connect. And the event field contains arecord with event type
dependent information. The first element in the event record is always the type you subscribed to. For exampleif you
subscribed to key _up eventsyou will receive the #wx{ event =Event } where Event will be awxK ey event record
where Event #wxKey. type = key_up.

In wxWidgets the developer hasto call wkEvent : ski p() if hewantsthe event to be processed by other handlers.
Y ou can do the same in wx if you use callbacks. If you want the event as messages you just don't supply a callback
and you can set the skip option in connect call to true or false, the default it is false. True means that you get the
message but let the subsequent handlers also handle the event. If you want to change this behavior dynamically you
must use callbacks and call wxEvent : ski p() .

Callback event handling is done by using the optional callback fun/2 when attaching the handler. The
fun(#wx{},wxObject() must take two arguments where the first is the same as with message events described above
and the second is an object reference to the actual event object. With the event object you can call wxEvent : ski p()
and access al the data. When using callbacks you must call wxEvent : ski p() by yourself if you want any of the
events to be forwarded to the following handlers. The actual event objects are deleted after the fun returns.

The callbacks are always invoked by another process and have exclusive usage of the GUI when invoked. This means
that a callback fun cannot use the process dictionary and should not make calls to other processes. Calls to another
processinside acallback fun may cause adeadlock if the other processiswaiting on completion of hiscall to the GUI.

1.1.5 Acknowledgments

Mats-Ola Persson wrote the initial wxWidgets binding as part of his master thesis. The current version is atota re-
write but many ideas have been reused. The reason for the re-write was mostly due to the limited requirements he
had been given by us.

Also thanks to the wxWidgets team that develops and supports it so we have something to use.

Ericsson AB. All Rights Reserved.: wxErlang | 3

1.1 wx the erlang binding of wxWidgets

2 Reference Manual

The wxErlang applicationis an api for writing graphical user interfaces with wxWidgets.

4 | Ericsson AB. All Rights Reserved.: wxErlang

WX

WX

Erlang module

A port of wxWidgets.

Thisis the base api of wxWidgets. This module contains functions for starting and stopping the wx-server, as well
as other utility functions.

wxWidgetsis object oriented, and not functional. Thus, in wxErlang amodul e represents aclass, and the object created
by this class has an own type, wxCLASS(). This module represents the base class, and all other wxMODULE's are
sub-classes of this class.

Objects of aclass are created with wxCLASS:new(...) and destroyed with wxCLASS:destroy(). Member functions are
called with wxCLASS:member(Object, ...) instead of asin C++ Object.member(...).

Sub class modules inherit (non static) functions from their parents. The inherited functions are not documented in
the sub-classes.

This erlang port of wxWidgets tries to be a one-to-one mapping with the original wxWidgets library. Some things are
different though, as the optional arguments use property listsand can be in any order. The main differenceisthe event
handling which is different from the original library. See wxEvtHandler.

The following classes are implemented directly as erlang types:
wxPoint={ x,y} ,wxSize={ w,h} wxRect={ x,y,w,h} wxColour={r,g,b [,a}, wxString=unicode:chardata(),
wxGBPosition={r,c} ,wxGBSpan={ rs,cs} ,wxGridCell Coords={r,c} .

wxWidgets uses a process specific environment, which is created by wx:new/0. To be able to use the environment from
other processes, call get_env/0toretrievethe environment and set_env/1 to assign the environment in the other process.

Global (classless) functions are located in the wx_misc module.
DATA TYPES

wx_colour() = {R::byte(), G::byte(), B::byte()} | wx_colourd()
wx_colourd() = { R::byte(), G::byte(), B::byte(), A::byte()}

wx_datetime() = {{ Y ear::integer(), Month::integer(), Day::integer()}, { Hour::integer(), Minute::integer(),
Second::integer()} }

In Local Timezone

wx_enum() = integer()

Constant defined in wx.hrl

wx_env() = #wx_env{}

Opague process environment
wx_memory() = binary() | #wx_mem{}

Opagque memory reference
wx_object() = #wx_ref{}

Opaque object reference
wx_wxHtmILinkInfo() = #wxHtmlLinkInfo{ href=unicode:chardata(), target=unicode:chardata()}

Ericsson AB. All Rights Reserved.: wxErlang | 5

href
href

WX

wx_wxMouseState() = #wxM ouseState{ x=integer(), y=integer(), leftDown=boolean(), middleDown=boolean(),
rightDown=boolean(), controlDown=boolean(), shiftDown=boolean(), altDown=boolean(), metaDown=boolean(),
cmdDown=boolean()}

See #wxMouseState{} defined in wx.hrl

Exports
parent class(X1l) -> term()

new() -> wx object()
Startsawx server.

new(Options::[Option]) -> wx object()
Types:
Option = {debug, list() | atom()} | {silent_start, boolean()}

Starts awx server. Option may be {debug, Level}, see debug/1. Or {silent_start, Bool}, which causes error messages
at startup to be suppressed. The latter can be used as a silent test of whether wx is properly installed or not.

destroy() -> ok

Stops awx server.

get env() -> wx env()

Gets this process's current wx environment. Can be sent to other processes to allow them use this process wx
environment.

See also: set_env/1.

set env(Wx _env::wx env()) -> ok
Sets the process wx environment, allows this process to use another process wx environment.

null() -> wx_object()
Returns the null object

is null(Wx_ref::wx object()) -> boolean()
Returnstrueif object is null, false otherwise

equal(Wx_ ref::wx object(), X2::wx object()) -> boolean()
Returnstrueif both arguments references the same object, fal se otherwise

getObjectType(Wx ref::wx object()) -> atom()
Returns the object type

6 | Ericsson AB. All Rights Reserved.: wxErlang

WX

typeCast(0ld::wx object(), NewType::atom()) -> wx object()

Casts the object to class NewType. It is needed when using functions like wxWindow:findwWindow/2, which returns
ageneric wxObject type.

batch(Fun::function()) -> term()

Batches all wx commands used in the fun. Improves performance of the command processing by grabbing the
wxWidgets thread so that no event processing will be done before the compl ete batch of commandsis invoked.

See also: foldl/3, foldr/3, foreach/2, map/2.

foreach(Fun::function(), List::list()) -> ok
Behaves like lists:foreach/2 but batches wx commands. See batch/1.

map(Fun::function(), List::list()) -> list()
Behaves like lists:map/2 but batches wx commands. See batch/1.

foldl(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldl/3 but batches wx commands. See batch/1.

foldr(Fun::function(), Acc::term(), List::list()) -> term()
Behaves like lists:foldr/3 but batches wx commands. See batch/1.

create memory(Size::integer()) -> wx memory()

Createsamemory area (of Sizein bytes) which can be used by an external library (i.e. opengl). It isup to the client to
keep areference to this object so it does not get garbage collected by erlang while still in use by the external library.

Thisisfar from erlang'sintentional usage and can crash the erlang emulator. Use it carefully.

get memory bin(Wx mem::wx memory()) -> binary()

Returns the memory area as abinary.

retain_memory(Wx_mem::wx_memory()) -> ok

Saves the memory from deletion until release_memory/1iscalled. If release_memory/1is not called the memory will
not be garbage collected.

release memory(Wx mem::wx memory()) -> ok

debug(Debug::Level | [Level]) -> ok
Types.
Level = none | verbose | trace | driver | integer()

Sets debug level. If debug level is'verbose' or 'trace’ each call is printed on console. If Level is'driver' each allocated
object and deletion is printed on the console.

demo() -> ok | {error, atom()}
Starts awxErlang demo if examples directory exists and is compiled

Ericsson AB. All Rights Reserved.: wxErlang | 7

wx_object

wXx_object

Erlang module

wx_object - Generic wx object behaviour

Thisis a behaviour module that can be used for "sub classing” wx objects. It works like aregular gen_server module
and creates a server per object.

NOTE: Currently no form of inheritance isimplemented.
The user module should export:

init(Args) should return
{wxObject, State} | { wxObject, State, Timeout} | ignore | { stop, Reason}

Asynchronous window event handling:
handle_event(#wx{}, State) should return
{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

The user module can export the following callback functions:

handle_call(Msg, { From, Tag}, State) should return

{reply, Reply, State} | {reply, Reply, State, Timeout} | { noreply, State} | { noreply, State, Timeout} | { stop, Reason,
Reply, State}

handle_cast(Msg, State) should return

{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

If the above are not exported but called, the wx_object process will crash. The user module can also export:

Infois message e.g. {'EXIT', P, R}, { nodedown, N}, ...
handle_info(Info, State) should return, ...
{noreply, State} | { noreply, State, Timeout} |{stop, Reason, State}

If a message is sent to the wx_object process when handle info is not exported, the message will be dropped and
ignored.

When stop is returned in one of the functions above with Reason = normal | shutdown | Term, terminate(State) is
caled. It lets the user module clean up, it is always called when server terminates or when wx_object() in the driver
is deleted. If the Parent process terminates the Modul eiterminate/2 function is called.

terminate(Reason, State)

Example:

8 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

-module(myDialog).
-export([new/2, show/1, destroy/1]). %% API
-export([init/1, handle call/3, handle event/2,
handle info/2, code change/3, terminate/2]).
new/2, showModal/1l, destroy/1]). %% Callbacks

%% Client API
new(Parent, Msg) ->
wx_object:start(?MODULE, [Parent,Id], [1]).

show(Dialog) ->
wx_object:call(Dialog, show modal).

destroy(Dialog) ->
wx_object:call(Dialog, destroy).

%% Server Implementation ala gen server
init([Parent, Str]) ->
Dialog = wxDialog:new(Parent, 42, "Testing", [1),

wxDialog:connect(Dialog, command button clicked),
{Dialog, MyState}.

handle call(show, From, State) ->
wxDialog:show(State#state.win),
{reply, ok, State};

handle event (#wx{}, State) ->
io:format("Users clicked button~n",[1),
{noreply, State};

DATA TYPES
request_id() = term()

server_ref() = wx:wx_aobject() | atom() | pid()

Exports

start(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Types.

Name = {local, atom()}

Mod = atom()

Args = term)

Flag = trace | log | {logfile, string()} | statistics | debug

Options = [{tineout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start_link(Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}

Types:

Mod = atom()
Args = term))
Flag = trace | log | {logfile, string()} | statistics | debug

Ericsson AB. All Rights Reserved.: wxErlang | 9

wx_object

Options = [{tineout, timeout()} | {debug, [Flag]}]

Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

start link(Name, Mod, Args, Options) -> wxWindow:wxWindow() | {error, term()}
Types:
Name = {local, atom()}

Mod = atom()
Args = term)
Flag = trace | log | {logfile, string()} | statistics | debug

Options = [{tineout, timeout()} | {debug, [Flag]}]
Starts a generic wx_object server and invokes Mod:init(Args) in the new process.

stop(0bj) -> ok
Types.
bj = wx:wx_object() | atom() | pid()

Stops a generic wx_object server with reason 'normal’. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the process does not exist, an exception is raised.

stop(0Obj, Reason, Timeout) -> ok

Types:
Q] = wx:wx_object() | aton() | pid()
Reason = term()
Ti meout = timeout ()

Stops a generic wx_object server with the given Reason. Invokes terminate(Reason,State) in the server. The call waits
until the process is terminated. If the call times out, or if the process does not exist, an exception is raised.

call(0Obj, Request) -> term()

Types:
Qbj = wx:wx_object() | aton() | pid()
Request = term))

Make a call to awx_object server. The call waits until it gets a result. Invokes handle_call(Request, From, State) in
the server

call(Obj, Request, Timeout) -> term()
Types.
hj = wx:wx_object() | atom() | pid()
Request = term)
Ti meout = integer()
Make acall to awx_object server with atimeout. Invokes handle_call(Request, From, State) in server

send request(0Obj, Request::term()) -> request id()

Types:
hj = wx:wx_object() | atom() | pid()

10 | Ericsson AB. All Rights Reserved.: wxErlang

wx_object

Make an send_request to a generic server. and return a Requestld which can/should be used with wait_response/[1]
2]. Invokes handle_call(Request, From, State) in server.

wait response(RequestId::request id()) -> {reply, Reply::term()} | {error,
{term(), server ref()}}

Wait infinitely for areply from a generic server.

wait response(Key::request id(), Timeout::timeout()) -> {reply,
Reply::term()} | timeout | {error, {term(), server ref()}}

Wait 'timeout' for areply from a generic server.

check response(Msg::term(), Key::request id()) -> {reply, Reply::term()} |
false | {error, {term(), server ref()}}

Check if areceived message was areply to a Requestid

cast(0Obj, Request) -> ok
Types:
hj = wx:wx_object() | atom() | pid()
Request = term))
Make a cast to awx_object server. Invokes handle_cast(Request, State) in the server

get pid(0Obj) -> pid()
Types:

bj = wx:wx_object() | atom() | pid()
Get the pid of the object handle.

set pid(Obj, Pid::pid()) -> wx:wx object()
Types:

bj = wx:wx_object() | atom() | pid()
Sets the controlling process of the object handle.

reply(X1::{pid(), Tag::term()}, Reply::term()) -> pid()
Get the pid of the object handle.

Ericsson AB. All Rights Reserved.: wxErlang | 11

wxAcceleratorEntry

wxAcceleratorEntry

Erlang module

An object used by an application wishing to create an accelerator table (seewxAccel er at or Tabl e).
See: wxAccel er at or Tabl e, wxW ndow. set Accel er at or Tabl e/ 2
wxWidgets docs: wxAccelerator Entry

Data Types

wxAcceleratorEntry() = wx:wx object()

Exports

new() -> wxAcceleratorEntry()

new(Options :: [Option]) -> wxAcceleratorEntry()
new(Entry) -> wxAcceleratorEntry()
Types:

Entry = wxAcceleratorEntry()
Copy ctor.

getCommand(This) -> integer()
Types:
This = wxAcceleratorEntry()
Returns the command identifier for the accelerator table entry.

getFlags(This) -> integer()
Types.

This = wxAcceleratorEntry()
Returns the flags for the accelerator table entry.

getKeyCode(This) -> integer()
Types.

This = wxAcceleratorEntry()
Returns the keycode for the accelerator table entry.

set(This, Flags, KeyCode, Cmd) -> ok
Types.

This = wxAcceleratorEntry()

Flags = KeyCode = Cmd = integer()

set(This, Flags, KeyCode, Cmd, Options :: [Option]) -> ok
Types:

12 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAcceleratorEntry

This = wxAcceleratorEntry()
Flags = KeyCode = Cmd = integer()
Option = {item, wxMenultem:wxMenultem()}

Sets the accelerator entry parameters.

destroy(This :: wxAcceleratorEntry()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 13

wxAcceleratorTable

wxAcceleratorTable

Erlang module

An accelerator table allows the application to specify atable of keyboard shortcuts for menu or button commands.

The object wxNullAcceleratorTable is defined to be a table with no data, and is the initial accelerator table for a
window.

Example:

Remark: An accelerator takes precedence over normal processing and can be a convenient way to program some event
handling. For example, you can use an accelerator table to enable a dialog with a multi-line text control to accept
CTRL-Enter as meaning 'OK".

Predefined objects (include wx.hrl): 2wxNullAcceleratorTable
See: wxAccel erat or Ent ry, wxW ndow. set Accel er at or Tabl e/ 2
wxWidgets docs: wxAccelerator Table

Data Types

wxAcceleratorTable() = wx:wx object()

Exports

new() -> wxAcceleratorTable()
Default ctor.

new(N, Entries) -> wxAcceleratorTable()
Types.

N = integer()

Entries = [wxAcceleratorEntry:wxAcceleratorEntry()]
Initializes the accelerator table from an array of wxAccel erat orEntry.

destroy(This :: wxAcceleratorTable()) -> ok
DestroysthewxAccel er at or Tabl e object.
See overview_refcount_destruct for moreinfo.

ok(This) -> boolean()
Types.

This = wxAcceleratorTable()
See i sCk/ 1.

isOk(This) -> boolean()
Types.

This = wxAcceleratorTable()
Returns true if the accelerator tableis valid.

14 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxActivateEvent

wxActivateEvent

Erlang module

An activate event is sent when awindow or application is being activated or deactivated.

Note: Until wxWidgets 3.1.0 activation events could be sent by wxMSW when the window was minimized. This
reflected the native MSW behaviour but was often surprising and unexpected, so starting from 3.1.0 such events are
not sent any more when the window is in the minimized state.

See: Overview events, WwxApp: : | sAct i ve (not implemented in wx)
This classis derived (and can use functions) from: wx Event
wxWidgets docs: wxActivateEvent

Events

Usewx Evt Handl er: connect / 3 withwxAct i vat eEvent Type to subscribe to events of thistype.

Data Types

wxActivateEvent() = wx:wx object()

wxActivate() =
#wxActivate{type = wxActivateEvent:wxActivateEventType(),
active = boolean()}

wxActivateEventType() = activate | activate app | hibernate

Exports

getActive(This) -> boolean()
Types:
This = wxActivateEvent()
Returnstrueif the application or window is being activated, false otherwise.

Ericsson AB. All Rights Reserved.: wxErlang | 15

href
href

wxArtProvider

wxArtProvider

Erlang module

WXArt Provi der classis used to customize the look of wxWidgets application.

When wxWidgets needs to display an icon or a bitmap (e.g. in the standard file dialog), it does not use a hard-coded
resource but asks wxAr t Pr ovi der for it instead. This way users can plug in their own wxAr t Pr ovi der class
and easily replace standard art with their own version.

All that is needed is to derive a class from WXAr t Provi der, override
either its wWxArtProvider::CreateBitmp() (not implemented in wx) and/or its
WxArt Provi der:: Creat el conBundl e() (not implemented in wx) methods and register the provider with
WxArt Provi der: : Push() (notimplementedinwx):

If you need hitmap images (of the same artwork) that should be displayed at different sizes you should probably
consider overriding wxAr t Pr ovi der : : Cr eat el conBundl e (not implemented in wx) and supplying icon
bundles that contain different bitmap sizes.

There's another way of taking advantage of this class: you can use it in your code and use platform native icons as
provided by get Bi t map/ 2 or get | con/ 2.

Identifying art resources

Every bitmap and icon bundle are known to wxAr t Pr ovi der under an unique ID that is used when requesting a
resource from it. The ID is represented by the AwxArtID type and can have one of these predefined values (you can
see bitmaps represented by these constants in the page_samples_artprov):

Additionally, any string recognized by custom art providers registered using WwxArt Provi der: : Push (not
implemented in wx) may be used.

Note: When running under GTK+ 2, GTK+ stock item IDs (e.g. " gt k- cdr om') may be used as well: For alist
of the GTK+ stock items please refer to the GTK+ documentation page. It is aso possible to load icons from the
current icon theme by specifying their name (without extension and directory components). Icon themes recognized
by GTK+ follow the freedesktop.org | con Themes specification. Note that themes are not guaranteed to contain all
icons, so WX Ar t Provi der may return AwxNullBitmap or wxNulllcon. The default theme is typically instaled in
/usr/sharel/icons/hicolor.

Clients

Thecl i ent istheentity that callswxAr t Provi der 'sget Bi t map/ 2 or get | con/ 2 function. It is represented
by wxClientlD type and can have one of these values:

Client ID serve as a hint to wxAr t Provi der that is supposed to help it to choose the best looking bitmap. For
exampleit is often desirable to use slightly different icons in menus and toolbars even though they represent the same
action (e.g. WxART_FILE_OPEN). Remember that thisis realy only a hint for wxAr t Pr ovi der - it is common
that get Bi t map/ 2 returnsidentical bitmap for different client values!

See: Examples, wxAr t Pr ovi der , usage; stock ID list
wxWidgets docs: wxArtProvider

16 | Ericsson AB. All Rights Reserved.: wxErlang

href
href
href
href

wxArtProvider

Data Types

wxArtProvider() = wx:wx object()

Exports
getBitmap(Id) -> wxBitmap:wxBitmap()
Types:

Id = unicode:chardata()

getBitmap(Id, Options :: [Option]) -> wxBitmap:wxBitmap()

Types.
Id = unicode:chardata()
Option =

{client, unicode:chardata()} |
{size, {W :: integer(), H :: integer()}}

Query registered providers for bitmap with given ID.
Return: The bitmap if one of registered providers recognizesthe ID or wxNullBitmap otherwise.

getIcon(Id) -> wxIcon:wxIcon()
Types.
Id = unicode:chardata()

getIcon(Id, Options :: [Option]) -> wxIcon:wxIcon()
Types:

Id = unicode:chardata()

Option =

{client, unicode:chardata()} |
{size, {W :: integer(), H :: integer()}}

Sameasget Bi t map/ 2, but return awx| con object (or AwxNulllcon on failure).

Ericsson AB. All Rights Reserved.: wxErlang | 17

wxAuiDockArt

wxAuiDockArt

Erlang module

wxAui DockArt ispart of the wxAUI class framework. See also overview_aui.

wxAui DockAr t isthe art provider: provides all drawing functionality to the wxAui dock manager. This allows the
dock manager to have a pluggable look-and-feel.

By default, awxAui Manager uses an instance of this class called wxAui Def aul t DockArt (not implemented
in wx) which provides bitmap art and a colour scheme that is adapted to the major platforms look. You
can either derive from that class to alter its behaviour or write a completely new dock art class. Call
wxAui Manager : set Art Provi der/ 2 to force wxAUI to use your new dock art provider.

See: wxAui Manager , wxAui Panel nf o
wxWidgets docs: wxAuiDockArt

Data Types

wxAuiDockArt() = wx:wx _object()

Exports

getColour(This, Id) -> wx:wx colour4()
Types:
This = wxAuiDockArt()
Id = integer()
Get the colour of a certain setting.
i d can be one of the colour values of wxAui PaneDockArt Set ti ng.

getFont(This, Id) -> wxFont:wxFont()
Types:

This = wxAuiDockArt()

Id = integer()
Get afont setting.

getMetric(This, Id) -> integer()
Types:
This = wxAuiDockArt()
Id = integer()
Get the value of a certain setting.
i d can be one of the size values of wx Aui PaneDockArt Setti ng.

setColour(This, Id, Colour) -> ok
Types:

18 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAuiDockArt

This = wxAuiDockArt()
Id = integer()
Colour = wx:wx_colour()
Set a certain setting with the value col our .

i d can be one of the colour values of wxAui PaneDockArt Setti ng.

setFont(This, Id, Font) -> ok
Types.

This = wxAuiDockArt()

Id = integer()

Font = wxFont:wxFont()
Set afont setting.

setMetric(This, Id, New val) -> ok
Types.

This = wxAuiDockArt()

Id = New val = integer()

Set a certain setting with the value new_val .

i d can be one of the size values of wxAui PaneDockArt Setti ng.

Ericsson AB. All Rights Reserved.: wxErlang | 19

wxAuiManager

wxAuiManager

Erlang module

wxAui Manager isthe central class of the wxAUI class framework.

wxAui Manager manages the panes associated with it for aparticular wx Fr ane, using a paneswxAui Panel nf o
information to determine each pane's docking and floating behaviour.

wxAui Manager uses wxWidgets sizer mechanism to plan the layout of each frame. It uses a replaceable dock art
classto do all drawing, so all drawing islocalized in one area, and may be customized depending on an application's
specific needs.

wxAui Manager works as follows: the programmer adds panes to the class, or makes changes to existing pane
properties (dock position, floating state, show state, etc.). To apply these changes, wxAui Manager 'supdat e/ 1
functionis called. This batch processing can be used to avoid flicker, by modifying more than one pane at atime, and
then "committing" all of the changes at once by calling updat e/ 1.

Panes can be added quite easily:
Later on, the positions can be modified easily. The following will float an existing pane in atool window:
Layers, Rows and Directions, Positions

Inside wxAUI, the docking layout is figured out by checking several pane parameters. Four of these are important for
determining where a pane will end up:

Styles

This class supports the following styles:

See: Overview aui, wx Aui Not ebook, wxAui DockAr t , wxAui Panel nf o
This classis derived (and can use functions) from: wx Evt Handl er
wxWidgets docs: wxAuiM anager

Events

Event types emitted from this class. aui _pane_button, aui _pane_cl ose, aui _pane_naxi m ze,
aui _pane_restore,aui _pane_acti vated, aui _render

Data Types

wxAuiManager() = wx:wx _object()

Exports
new() -> wxAuiManager()

new(Options :: [Option]) -> wxAuiManager()
Types.
Option =
{managed wnd, wxWindow:wxWindow()} | {flags, integer()}
Constructor.

20 | Ericsson AB. All Rights Reserved.: wxErlang

href
href

wxAuiManager

destroy(This :: wxAuiManager()) -> ok
Dtor.

addPane(This, Window) -> boolean()
Types:

This = wxAuiManager()

Window = wxWindow:wxWindow()

addPane(This, Window, Options :: [Option]) -> boolean()
addPane(This, Window, Pane info) -> boolean()
Types:
This = wxAuiManager()
Window = wxWindow:wxWindow ()
Pane info = wxAuiPaneInfo:wxAuiPaneInfo()
addPane/ 4 tells the frame manager to start managing a child window.

There are several versions of this function. The first version allows the full spectrum of pane parameter possibilities.
The second version is used for simpler user interfaces which do not require as much configuration. The last version
allows adrop position to be specified, which will determine where the pane will be added.

addPane(This, Window, Pane info, Drop pos) -> boolean()
Types:

This = wxAuiManager()

Window = wxWindow:wxWindow/()

Pane info = wxAuiPaneInfo:wxAuiPaneInfo()

Drop pos = {X :: integer(), Y :: integer()}

detachPane(This, Window) -> boolean()
Types.

This = wxAuiManager()

Window = wxWindow:wxWindow()

Tellsthewx Aui Manager to stop managing the pane specified by window.

Thewindow, if in afloated frame, is reparented to the frame managed by wx Aui Manager .

getAllPanes(This) -> [wxAuiPaneInfo:wxAuiPaneInfo()]
Types:

This = wxAuiManager()
Returns an array of all panes managed by the frame manager.

getArtProvider(This) -> wxAuiDockArt:wxAuiDockArt()
Types:

This = wxAuiManager()
Returns the current art provider being used.

See: wxAui DockAr t

Ericsson AB. All Rights Reserved.: wxErlang | 21

wxAuiManager

getDockSizeConstraint(This) ->
{Widthpct :: number(),
Heightpct :: number()}
Types.
This = wxAuiManager()
Returns the current dock constraint values.

Seeset DockSi zeConst r ai nt/ 3 for more information.

getFlags(This) -> integer()
Types:
This = wxAuiManager()
Returns the current AwxAuiManagerOption's flags.

getManagedWindow(This) -> wxWindow:wxWindow/()
Types.
This = wxAuiManager()

Returns the frame currently being managed by wxAui Manager .

getManager(Window) -> wxAuiManager()
Types:
Window = wxWindow:wxWindow()
Calling this method will return the wxAui Manager for agiven window.

Thew ndow parameter should specify any child window or sub-child window of the frame or window managed by
wxAui Manager .

Thew ndow parameter need not be managed by the manager itself, nor does it even need to be a child or sub-child
of amanaged window. It must however be inside the window hierarchy underneath the managed window.

getPane(This, Name) -> wxAuiPaneInfo:wxAuiPaneInfo()
getPane(This, Window) -> wxAuiPaneInfo:wxAuiPaneInfo()
Types:

This = wxAuiManager()

Window = wxWindow:wxWindow ()

get Pane/ 2 is used to lookup awxAui Panel nf o object either by window pointer or by pane name, which acts
asauniqueid for awindow pane.

The returned wx Aui Panel nf o object may then be modified to change a pane's look, state or position. After one or
more modificationsto wx Aui Panel nf o, updat e/ 1 should be called to commit the changes to the user interface.
If the lookup failed (meaning the pane could not be found in the manager), acall to the returned wx Aui Panel nf o's
IsOk() method will return false.

hideHint(This) -> ok
Types.
This = wxAuiManager()
hi deHi nt/ 1 hides any docking hint that may be visible.

22 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManager

insertPane(This, Window, Insert location) -> boolean()
Types.

This = wxAuiManager()

Window = wxWindow:wxWindow()

Insert location = wxAuiPaneInfo:wxAuiPaneInfo()

insertPane(This, Window, Insert location, Options :: [Option]) ->
boolean()

Types.

This = wxAuiManager()

Window = wxWindow:wxWindow/()

Insert location = wxAuiPaneInfo:wxAuiPaneInfo()

Option = {insert level, integer()}
This method is used to insert either a previously unmanaged pane window into the frame manager, or to insert a
currently managed pane somewhere else.

i nsert Pane/ 4 will push al panes, rows, or docks aside and insert the window into the position specified by
i nsert _| ocation.

Becausei nsert _| ocati on can specify either a pane, dock row, or dock layer, thei nsert _| evel parameter
is used to disambiguate this. The parameter i nsert | evel can take a value of wxAUI_INSERT_PANE,
wWxAUI_INSERT_ROW or wxAUI_INSERT_DOCK.

loadPaneInfo(This, Pane part, Pane) -> ok
Types:

This = wxAuiManager()

Pane part = unicode:chardata()

Pane = wxAuiPaneInfo:wxAuiPaneInfo()

| oadPanel nf o/ 3 is similar to LoadPerspective, with the exception that it only loads information about a single
pane.

This method writes the serialized data into the passed pane. Pointers to Ul elements are not modified.
Note: This operation also changes the name in the pane information!

See: | oadPer spective/ 3

See: savePanel nf o/ 2

See: savePer spective/ 1

loadPerspective(This, Perspective) -> boolean()
Types:

This = wxAuiManager()

Perspective = unicode:chardatal()

loadPerspective(This, Perspective, Options :: [Option]) ->

boolean()
Types.

Ericsson AB. All Rights Reserved.: wxErlang | 23

wxAuiManager

This = wxAuiManager()
Perspective = unicode:chardata()
Option = {update, boolean()}

Loads a saved perspective.

A perspective is the layout state of an AUI managed window.

All currently existing panes that have an object in "perspective" with the same name ("equivalent") will receive the
layout parameters of the object in "perspective". Existing panesthat do not have an equivalent in "perspective” remain
unchanged, objects in "perspective" having no equivalent in the manager are ignored.

See: | oadPanel nf o/ 3
See: | oadPer spective/ 3

See: savePer spective/ 1

savePaneInfo(This, Pane) -> unicode:charlist()
Types:

This wxAuiManager ()

Pane = wxAuiPaneInfo:wxAuiPaneInfo()

savePanel nf o/ 2 is similar to SavePerspective, with the exception that it only saves information about a single
pane.

Return: The serialized layout parameters of the pane are returned within the string. Information about the pointers to
Ul elements stored in the pane are not serialized.

See: | oadPanel nfo/ 3
See: | oadPer spective/ 3
See: savePer spective/1

savePerspective(This) -> unicode:charlist()
Types:
This = wxAuiManager()

Savesthe entire user interface layout into an encoded wx St r i ng (hot implemented in wx), which can then be stored
by the application (probably using wxConfig).

See: | oadPer spective/ 3
See: | oadPanel nf o/ 3
See: savePanel nf o/ 2

setArtProvider(This, Art provider) -> ok
Types.
This = wxAuiManager()
Art provider = wxAuiDockArt:wxAuiDockArt()
Instructswx Aui Manager to use art provider specified by parameter art _pr ovi der for all drawing calls.

This alows pluggable look-and-feel features. The previous art provider object, if any, will be deleted by
wxAui Manager .

See: wxAui DockAr t

24 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManager

setDockSizeConstraint(This, Widthpct, Heightpct) -> ok
Types.

This = wxAuiManager()

Widthpct = Heightpct = number()

When auser creates anew dock by dragging awindow into adocked position, often timesthe large size of the window
will create a dock that is unwieldy large.

wxAui Manager by default limits the size of any new dock to 1/3 of the window size. For horizontal docks, this
would be 1/3 of the window height. For vertical docks, 1/3 of the width.

Calling this function will adjust this constraint value. The numbers must be between 0.0 and 1.0. For instance, calling
SetDockSizeContraint with 0.5, 0.5 will cause new docksto belimited to half of the size of the entire managed window.

setFlags(This, Flags) -> ok
Types:
This = wxAuiManager()
Flags = integer()
This method is used to specify AwxAuiManagerOption's flags.

f | ags specifies options which allow the frame management behaviour to be modified.

setManagedWindow(This, Managed wnd) -> ok
Types.

This = wxAuiManager()

Managed wnd = wxWindow:wxWindow ()

Called to specify the frame or window which isto be managed by wx Aui Manager .
Frame management is not restricted to just frames. Child windows or custom controls are a so allowed.

showHint (This, Rect) -> ok

Types:
This = wxAuiManager()
Rect =
{X :: integer(),
Y :: integer(),
W :: integer(),
H :: integer()}

Thisfunction is used by controls to explicitly show a hint window at the specified rectangle.

It is rarely called, and is mostly used by controls implementing custom pane drag/drop behaviour. The specified
rectangle should be in screen coordinates.

unInit(This) -> ok
Types.
This = wxAuiManager()
Dissociate the managed window from the manager.

Ericsson AB. All Rights Reserved.: wxErlang | 25

wxAuiManager

This function may be called before the managed frame or window is destroyed, but, since wxWidgets 3.1.4, it's
unnecessary to call it explicitly, as it will be called automatically when this window is destroyed, as well as when
the manager itself is.

update(This) -> ok
Types:
This = wxAuiManager()
This method is called after any number of changes are made to any of the managed panes.

updat e/ 1 must be invoked after addPane/ 4 or i nsert Pane/ 4 are called in order to "realize" or "commit"
the changes. In addition, any number of changes may be made to wxAui Panel nf o structures (retrieved with
get Pane/ 2), but to realize the changes, updat e/ 1 must be called. This construction allows pane flicker to be
avoided by updating the whole layout at one time.

26 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManagerEvent

wxAuiManagerEvent

Erlang module

Event used to indicate various actions taken with wx Aui Manager .
SeewxAui Manager for available event types.

See: wxAui Manager , wxAui Panel nf o

This classis derived (and can use functions) from: wx Event
wxWidgets docs: wxAuiM anager Event

Events

Usewx Evt Handl er : connect / 3 withwxAui Manager Event Type to subscribe to events of thistype.

Data Types

wxAuiManagerEvent() = wx:wx object()

wxAuiManager() =
#wxAuiManager{type =
wxAuiManagerEvent:wxAuiManagerEventType(),
manager = wxAuiManager:wxAuiManager(),
pane = wxAuiPaneInfo:wxAuiPaneInfo(),
button = integer(),
veto flag = boolean(),
canveto flag = boolean(),
dc = wxDC:wxDC()}

wxAuiManagerEventType() =
aui pane button | aui pane close | aui pane maximize |
aul pane restore | aui pane activated | aui render |
aui find manager

Exports

setManager(This, Manager) -> ok
Types:
This = wxAuiManagerEvent()
Manager = wxAuiManager:wxAuiManager()

Setsthe wx Aui Manager this event is associated with.

getManager(This) -> wxAuiManager:wxAuiManager()
Types:

This = wxAuiManagerEvent()
Return: Thewx Aui Manager thisevent is associated with.

setPane(This, Pane) -> ok
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 27

href

wxAuiManagerEvent

This wxAuiManagerEvent()
Pane = wxAuiPaneInfo:wxAuiPaneInfo()

Sets the pane this event is associated with.

getPane(This) -> wxAuiPaneInfo:wxAuiPaneInfo()
Types:

This = wxAuiManagerEvent()
Return: The pane this event is associated with.

setButton(This, Button) -> ok
Types.
This = wxAuiManagerEvent()
Button = integer()

Setsthe ID of the button clicked that triggered this event.

getButton(This) -> integer()
Types:

This = wxAuiManagerEvent()
Return: The ID of the button that was clicked.

setDC(This, Pdc) -> ok

Types:
This = wxAuiManagerEvent()
Pdc = wxDC:wxDC()

getDC(This) -> wxDC:wxDC()
Types:
This = wxAuiManagerEvent()

veto(This) -> ok
Types:
This = wxAuiManagerEvent()

veto(This, Options :: [Option]) -> ok
Types.

This = wxAuiManagerEvent()

Option = {veto, boolean()}

Cancelsthe action indicated by thisevent if canVet o/ 1 istrue.

getVeto(This) -> boolean()
Types:

This = wxAuiManagerEvent()
Return: trueif this event was vetoed.

28 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiManagerEvent

See:vet o/ 2

setCanVeto(This, Can veto) -> ok
Types:
This = wxAuiManagerEvent()
Can_veto = boolean()

Sets whether or not this event can be vetoed.

canVeto(This) -> boolean()
Types.

This = wxAuiManagerEvent()
Return: true if this event can be vetoed.

See: vet o/ 2

Ericsson AB. All Rights Reserved.: wxErlang | 29

wxAuiNotebook

wxAuiNotebook

Erlang module

wxAui Not ebook is part of the wxAUI class framework, which represents a notebook control, managing multiple
windows with associated tabs.

See also overview_aui.

wxAui Not ebook is a notebook control which implements many features common in applications with dockable
panes. Specifically, wxAui Not ebook implements functionality which allows the user to rearrange tab order via
drag-and-drop, split the tab window into many different splitter configurations, and toggle through different themes
to customize the control's look and feel.

Thedefault themethat isusediswxAui Def aul t TabAr t (notimplemented inwx), which providesamodern, glossy
look and feel. The theme can be changed by calling set Ar t Provi der/ 2.

Styles

This class supports the following styles:

This classis derived (and can use functions) from: wxCont r ol wxW ndowwxEvt Handl er
wxWidgets docs: wxAuiNotebook

Events

Event types emitted from this class: command_aui not ebook _page cl ose,
conmand_aui not ebook _page_cl osed, command_aui not ebook _page changed,
conmand_aui not ebook _page_changi ng, conmmand_aui not ebook_but t on,
conmand_aui not ebook_begi n_dr ag, conmmand_aui not ebook_end_dr ag,
conmand_aui not ebook_drag_noti on, command_aui not ebook_al | ow_dnd,
conmand_aui not ebook _drag_done, command_aui not ebook_tab_m ddl e_down,
conmand_aui not ebook_tab_m ddl e_up, conmmand_aui not ebook_tab_ri ght down,

conmand_aui not ebook_tab_ri ght up,command_aui not ebook _bg dclick

Data Types

wxAuiNotebook() = wx:wx object()

Exports

new() -> wxAuiNotebook()
Default ctor.

new(Parent) -> wxAuiNotebook()
Types:

Parent = wxWindow:wxWindow()

new(Parent, Options :: [Option]) -> wxAuiNotebook()
Types.

30 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAuiNotebook

Parent = wxWindow:wxWindow()

Option =
{id, integer()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}

Constructor.
Creates awxAuiNotebok control.

addPage(This, Page, Caption) -> boolean()
Types:

This = wxAuiNotebook()

Page = wxWindow:wxWindow()

Caption = unicode:chardata()

addPage(This, Page, Caption, Options :: [Option]) -> boolean()
Types:

This = wxAuiNotebook()

Page = wxWindow:wxWindow ()

Caption = unicode:chardata()

Option = {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}

Adds a page.

If thesel ect parameter istrue, calling thiswill generate a page change event.

addPage(This, Page, Text, Select, Imageld) -> boolean()

Types.
This = wxAuiNotebook()
Page = wxWindow:wxWindow()

Text = unicode:chardata()
Select = boolean()
ImageIld = integer()
Adds anew page.
The page must have the book control itself as the parent and must not have been added to this control previoudly.
The call to this function may generate the page changing events.
Return: true if successful, false otherwise.
Remark: Do not delete the page, it will be deleted by the book control.
See: i nsert Page/ 6
Since: 2.9.3

create(This, Parent) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 31

wxAuiNotebook

This = wxAuiNotebook()
Parent = wxWindow:wxWindow()

create(This, Parent, Winid) -> boolean()
create(This, Parent, Winid :: [Option]) -> boolean()
Types:
This = wxAuiNotebook()
Parent = wxWindow:wxWindow ()
Option =
{id, integer()} |
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |
{style, integer()}
Creates the notebook window.

create(This, Parent, Winid, Options :: [Option]) -> boolean()
Types:

This = wxAuiNotebook()

Parent = wxWindow:wxWindow()

Winid = integer()

Option =
{pos, {X :: integer(), Y :: integer()}} |
{size, {W :: integer(), H :: integer()}} |

{style, integer()}
Constructs the book control with the given parameters.

deletePage(This, Page) -> boolean()

Types:
This = wxAuiNotebook()
Page = integer()

Deletes a page at the given index.
Calling this method will generate a page change event.

getArtProvider(This) -> wxAuiTabArt:wxAuiTabArt()
Types.
This = wxAuiNotebook()

Returns the associated art provider.

getPage(This, Page idx) -> wxWindow:wxWindow()
Types:

This = wxAuiNotebook()

Page idx = integer()
Returns the page specified by the given index.

32 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiNotebook

getPageBitmap(This, Page) -> wxBitmap:wxBitmap()

Types.
This = wxAuiNotebook()
Page = integer()

Returns the tab bitmap for the page.

getPageCount(This) -> integer()
Types:

This = wxAuiNotebook()
Returns the number of pagesin the notebook.

getPageIndex(This, Page wnd) -> integer()
Types:

This = wxAuiNotebook()

Page wnd = wxWindow:wxWindow()
Returns the page index for the specified window.

If the window is not found in the notebook, wxNOT_FOUND is returned.

getPageText(This, Page) -> unicode:charlist()

Types:
This = wxAuiNotebook()
Page = integer()

Returns the tab label for the page.

getSelection(This) -> integer()
Types:

This = wxAuiNotebook()
Returns the currently selected page.

insertPage(This, Page idx, Page, Caption) -> boolean()
Types.

This = wxAuiNotebook()

Page idx = integer()

Page = wxWindow:wxWindow()

Caption = unicode:chardata()

insertPage(This, Page idx, Page, Caption, Options :: [Option]) ->

boolean()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 33

wxAuiNotebook

This = wxAuiNotebook()

Page idx = integer()

Page = wxWindow:wxWindow()

Caption = unicode:chardata()

Option = {select, boolean()} | {bitmap, wxBitmap:wxBitmap()}
i nsert Page/ 6 issimilar to AddPage, but allows the ability to specify the insert location.

If thesel ect parameter istrue, calling thiswill generate a page change event.

insertPage(This, Index, Page, Text, Select, Imageld) -> boolean()
Types:

This = wxAuiNotebook()

Index = integer()

Page = wxWindow:wxWindow()

Text = unicode:chardata()

Select = boolean()

Imageld = integer()

Inserts anew page at the specified position.

Return: true if successful, false otherwise.

Remark: Do not delete the page, it will be deleted by the book control.
See: addPage/ 5

Since: 2.9.3

removePage(This, Page) -> boolean()

Types:
This = wxAuiNotebook()
Page = integer()

Removes a page, without deleting the window pointer.

setArtProvider(This, Art) -> ok
Types.

This = wxAuiNotebook()

Art = wxAuiTabArt:wxAuiTabArt()

Setsthe art provider to be used by the notebook.

setFont(This, Font) -> boolean()
Types:

This wxAuiNotebook()

Font = wxFont:wxFont()

Sets the font for drawing the tab labels, using a bold version of the font for selected tab labels.

setPageBitmap(This, Page, Bitmap) -> boolean()
Types.

34 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiNotebook

This wxAuiNotebook ()
Page = integer()
Bitmap = wxBitmap:wxBitmap()

Sets the bitmap for the page.
To remove a bitmap from the tab caption, pass wxNullBitmap.

setPageText(This, Page, Text) -> boolean()

Types.
This = wxAuiNotebook()
Page = integer()
Text = unicode:chardata()

Setsthe tab label for the page.

setSelection(This, New page) -> integer()
Types.
This = wxAuiNotebook()
New page = integer()
Sets the page selection.
Calling this method will generate a page change event.

setTabCtrlHeight(This, Height) -> ok
Types:

This = wxAuiNotebook()

Height = integer()
Sets the tab height.

By default, the tab control height is calculated by measuring the text height and bitmap sizes on the tab captions.
Calling this method will override that calculation and set the tab control to the specified height parameter. A call to
this method will override any call toset Uni f or nBi t mapSi ze/ 2.

Specifying -1 as the height will return the control to its default auto-sizing behaviour.

setUniformBitmapSize(This, Size) -> ok
Types:
This = wxAuiNotebook()
Size = {W :: integer(), H :: integer()}
Ensure that all tabs have the same height, even if some of them don't have bitmaps.

Passing 2wxDefaultSize as si ze undoes the effect of a previous call to this function and instructs the control to use
dynamic tab height.

destroy(This :: wxAuiNotebook()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 35

wxAuiNotebookEvent

wxAuiNotebookEvent

Erlang module

This classis used by the events generated by wx Aui Not ebook.
See: wxAui Not ebook, wxBookCt r | Event

This class is derived (and can use functions) from: wxBookCt r | Event wxNot i f yEvent wxComrandEvent
wxEvent

wxWidgets docs: wxAuiNotebook Event

Events

Usewx Evt Handl er : connect / 3 withwxAui Not ebookEvent Type to subscribe to events of this type.

Data Types

wxAuiNotebookEvent() = wx:wx object()

wxAuiNotebook() =
#wxAuiNotebook{type =
wxAuiNotebookEvent:wxAuiNotebookEventType(),
old selection = integer(),
selection = integer(),
drag source = wxAuiNotebook:wxAuiNotebook()}

wxAuiNotebookEventType() =
command auinotebook page close |
command auinotebook page changed |
command auinotebook page changing |
command _auinotebook button | command auinotebook begin drag |
command _auinotebook end drag |
command auinotebook drag motion |
command _auinotebook allow dnd |
command _auinotebook tab middle down |
command auinotebook tab middle up |
command auinotebook tab right down |
command auinotebook tab right up |
command _auinotebook page closed |
command_auinotebook drag done | command auinotebook bg dclick

Exports

setSelection(This, Page) -> ok

Types:
This = wxAuiNotebookEvent ()
Page = integer()

Sets the selection member variable.

getSelection(This) -> integer()
Types:

36 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAuiNotebookEvent

This = wxAuiNotebookEvent()
Returns the currently selected page, or wx NOT_FOUND if none was selected.

Note: under Windows, get Sel ect i on/ 1 will returnthesamevalueasget A dSel ect i on/ 1 when called from
the EVT_BOOKCTRL_PAGE_CHANG NG handler and not the page which is going to be selected.

setOldSelection(This, Page) -> ok

Types.
This = wxAuiNotebookEvent()
Page = integer()

Setsthe id of the page selected before the change.

getOldSelection(This) -> integer()
Types:
This = wxAuiNotebookEvent()
Returns the page that was sel ected before the change, wx NOT_FOUND if hone was sl ected.

setDragSource(This, S) -> ok
Types.
This = wxAuiNotebookEvent ()
S = wxAuiNotebook:wxAuiNotebook()

getDragSource(This) -> wxAuiNotebook:wxAuiNotebook()

Types:
This = wxAuiNotebookEvent()

Ericsson AB. All Rights Reserved.: wxErlang | 37

wxAuiPanelnfo

wxAuiPanelnfo

Erlang module

wxAui Panel nf o ispart of the wxAUI class framework. See also overview_aui.

wxAui Panel nf o specifies al the parameters for a pane. These parameters specify where the pane is on the screen,
whether it is docked or floating, or hidden. In addition, these parameters specify the pane's docked position, floating
position, preferred size, minimum size, caption text among many other parameters.

See: wxAui Manager , wxAui DockAr t
wxWidgets docs: wxAuiPanelnfo

Data Types

wxAuiPaneInfo() = wx:wx object()

Exports
new() -> wxAuiPaneInfo()

new(C) -> wxAuiPaneInfo()
Types:

C = wxAuiPaneInfo()
Copy constructor.

bestSize(This, Size) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
Size = {W :: integer(), H :: integer()}
best Si ze/ 3 setstheideal sizefor the pane.
The docking manager will attempt to use this size as much as possible when docking or floating the pane.

bestSize(This, X, Y) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()

X =Y = integer()

bottom(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
bot t onT 1 setsthe pane dock position to the bottom side of the frame.

Thisis the same thing as calling Direction(wxAUI_DOCK_BOTTOM).

bottomDockable(This) -> wxAuiPaneInfo()
Types:

38 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAuiPanelnfo

This = wxAuiPaneInfo()

bottomDockable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {b, boolean()}
bot t onDockabl e/ 2 indicates whether a pane can be docked at the bottom of the frame.

caption(This, C) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

C = unicode:chardata()

capt i on/ 2 setsthe caption of the pane.

captionVisible(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

captionVisible(This, Options :: [Option]) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()
Option = {visible, boolean()}
CaptionVisible indicates that a pane caption should be visible.
If false, no pane caption is drawn.

centre(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
Cent er () (notimplemented in wx) sets the pane dock position to the left side of the frame.

The centre paneisthe spacein the middle after all border panes (left, top, right, bottom) are subtracted from the layout.
Thisis the same thing as calling Direction(wxAUI_DOCK_CENTRE).

centrePane(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
cent r ePane/ 1 specifiesthat the pane should adopt the default center pane settings.

Centre panes usually do not have caption bars. Thisfunction provides an easy way of preparing a paneto be displayed
in the center dock position.

closeButton(This) -> wxAuiPaneInfo()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 39

wxAuiPanelnfo

This = wxAuiPaneInfo()

closeButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {visible, boolean()}

cl oseBut t on/ 2 indicates that a close button should be drawn for the pane.

defaultPane(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
def aul t Pane/ 1 specifies that the pane should adopt the default pane settings.

destroyOnClose(This) -> wxAuiPanelInfo()
Types:
This = wxAuiPanelInfo()

destroyOnClose(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {b, boolean()}
dest r oyOnd ose/ 2 indicates whether a pane should be destroyed when it is closed.

Normally a pane is simply hidden when the close button is clicked. Setting DestroyOnClose to true will cause the
window to be destroyed when the user clicks the pane's close button.

direction(This, Direction) -> wxAuiPanelInfo()
Types.

This = wxAuiPaneInfo()

Direction = integer()
di rect i on/ 2 determines the direction of the docked pane.

Itisfunctionally the sameascallingl ef t/ 1,ri ght/ 1,top/ 1 or bott o 1, except that docking direction may
be specified programmatically viathe parameter.

dock(This) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()
dock/ 1 indicates that a pane should be docked.

Itisthe opposite of f | oat / 1.

dockable(This) -> wxAuiPaneInfo()
Types:

40 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

This = wxAuiPaneInfo()

dockable(This, Options :: [Option]) -> wxAuiPanelInfo()
Types:
This = wxAuiPaneInfo()
Option = {b, boolean()}
dockabl e/ 2 specifies whether aframe can be docked or not.
It is the same as specifying TopDockabl e(b).BottomDockabl e(b).L eftDockable(b).RightDockable(b).

fixed(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()
fi xed/ 1 forces apane to be fixed size so that it cannot be resized.

After callingfi xed/ 1,i sFi xed/ 1 will return true.

float(This) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()
f | oat/ 1 indicates that a pane should be floated.

It isthe opposite of dock/ 1.

floatable(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()

floatable(This, Options :: [Option]) -> wxAuiPanelnfo()
Types:
This = wxAuiPanelInfo()
Option = {b, boolean()}
f | oat abl e/ 2 setswhether the user will be able to undock a pane and turn it into a floating window.

floatingPosition(This, Pos) -> wxAuiPaneInfo()
Types.

This = wxAuiPaneInfo()

Pos = {X :: integer(), Y :: integer()}
fl oati ngPosi ti on/ 3 setsthe position of the floating pane.

floatingPosition(This, X, Y) -> wxAuiPaneInfo()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 41

wxAuiPanelnfo

This = wxAuiPaneInfo()
X =Y = integer()

floatingSize(This, Size) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()

Size = {W :: integer(), H :: integer()}
fl oati ngSi ze/ 3 setsthe size of the floating pane.

floatingSize(This, X, Y) -> wxAuiPanelInfo()
Types.

This = wxAuiPanelInfo()

X =Y = integer()

gripper(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()

gripper(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {visible, boolean()}

gri pper/ 2 indicates that a gripper should be drawn for the pane.

gripperTop(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()

gripperTop(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()

Option = {attop, boolean()}

gri pper Top/ 2 indicates that a gripper should be drawn at the top of the pane.

hasBorder(This) -> boolean()
Types.
This = wxAuiPaneInfo()
hasBor der / 1 returnstrue if the pane displays a border.

hasCaption(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasCapt i on/ 1 returnstrueif the pane displays a caption.

42 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

hasCloseButton(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasCl oseBut t on/ 1 returnstrue if the pane displays a button to close the pane.

hasFlag(This, Flag) -> boolean()

Types.
This = wxAuiPaneInfo()
Flag = integer()

hasFl ag/ 2 returnstrueif the property specified by flag is active for the pane.

hasGripper(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasG i pper/ 1 returnstrueif the pane displays a gripper.

hasGripperTop(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasGr i pper/ 1 returnstrueif the pane displays a gripper at the top.

hasMaximizeButton(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasMaxi m zeBut t on/ 1 returnstrue if the pane displays a button to maximize the pane.

hasMinimizeButton(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasM ni m zeBut t on/ 1 returnstrueif the pane displays a button to minimize the pane.

hasPinButton(This) -> boolean()
Types:
This = wxAuiPaneInfo()
hasPi nBut t on/ 1 returnstrue if the pane displays a button to float the pane.

hide(This) -> wxAuiPanelInfo()
Types:

This = wxAuiPanelInfo()
hi de/ 1 indicates that a pane should be hidden.

isBottomDockable(This) -> boolean()
Types:

Ericsson AB. All Rights Reserved

.» wxErlang | 43

wxAuiPanelnfo

This = wxAuiPaneInfo()
i sBott onDockabl e/ 1 returnstrueif the pane can be docked at the bottom of the managed frame.
See: | sDockabl e() (notimplemented in wx)

isDocked(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sDocked/ 1 returnstrueif the paneis currently docked.

isFixed(This) -> boolean()
Types:
This = wxAuiPanelInfo()
i sFi xed/ 1 returnstrueif the pane cannot be resized.

isFloatable(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sFl oat abl e/ 1 returnstrue if the pane can be undocked and displayed as a floating window.

isFloating(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sFl oati ng/ 1 returnstrueif the paneisfloating.

isLeftDockable(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sLeft Dockabl e/ 1 returnstrueif the pane can be docked on the left of the managed frame.

See: | sDockabl e() (notimplemented in wx)

isMovable(This) -> boolean()
Types:
This = wxAuiPaneInfo()
IsMoveable() returnstrue if the docked frame can be undocked or moved to another dock position.

isOk(This) -> boolean()
Types.
This = wxAuiPanelInfo()
i sOK/ 1 returnstrueif thewxAui Panel nf o structureisvalid.

A pane structure isvalid if it has an associated window.

44 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

isResizable(This) -> boolean()
Types.
This = wxAuiPaneInfo()
i SResi zabl e/ 1 returnstrueif the pane can be resized.

isRightDockable(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sRi ght Dockabl e/ 1 returnstrueif the pane can be docked on the right of the managed frame.

See: | sDockabl e() (notimplemented in wx)

isShown(This) -> boolean()
Types.
This = wxAuiPaneInfo()

i sShown/ 1 returnstrueif the paneis currently shown.

isToolbar(This) -> boolean()
Types:
This = wxAuiPanelInfo()
i sTool bar/ 1 returnstrueif the pane contains atoolbar.

isTopDockable(This) -> boolean()
Types:
This = wxAuiPaneInfo()
i sTopDockabl e/ 1 returnstrueif the pane can be docked at the top of the managed frame.

See: | sDockabl e() (notimplemented in wx)

layer(This, Layer) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Layer = integer()
| ayer/ 2 determines the layer of the docked pane.

The dock layer is similar to an onion, the inner-most layer being layer 0. Each shell moving in the outward direction
has a higher layer number. This allows for more complex docking layout formation.

left(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()
| ef t/ 1 setsthe pane dock position to the |eft side of the frame.

Thisisthe same thing as calling Direction(wxAUl_DOCK_LEFT).

Ericsson AB. All Rights Reserved.: wxErlang | 45

wxAuiPanelnfo

leftDockable(This) -> wxAuiPaneInfo()
Types.
This = wxAuiPaneInfo()

leftDockable(This, Options :: [Option]) -> wxAuiPanelnfo()
Types:

This = wxAuiPanelInfo()

Option = {b, boolean()}
| ef t Dockabl e/ 2 indicates whether a pane can be docked on the left of the frame.

maxSize(This, Size) -> wxAuiPaneInfo()
Types.

This wxAuiPanelInfo()

Size = {W :: integer(), H :: integer()}

maxSi ze/ 3 sets the maximum size of the pane.

maxSize(This, X, Y) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()

X =Y = integer()

maximizeButton(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

maximizeButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

Option = {visible, boolean()}
maxi m zeBut t on/ 2 indicates that a maximize button should be drawn for the pane.

minSize(This, Size) -> wxAuiPaneInfo()
Types:

This wxAuiPanelInfo()

Size = {W :: integer(), H :: integer()}

m nSi ze/ 3 sets the minimum size of the pane.
Please note that thisis only partially supported as of thiswriting.

minSize(This, X, Y) -> wxAuiPaneInfo()
Types.

46 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

This = wxAuiPaneInfo()
X =Y = integer()

minimizeButton(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

minimizeButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {visible, boolean()}
m ni m zeBut t on/ 2 indicates that a minimize button should be drawn for the pane.

movable(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

movable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPanelInfo()

Option = {b, boolean()}
Movable indicates whether a frame can be moved.

name(This, N) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

N = unicode:chardata()

name/ 2 setsthe name of the pane so it can be referenced in lookup functions.

If anameis not specified by the user, arandom name is assigned to the pane when it is added to the manager.

paneBorder(This) -> wxAuiPanelInfo()
Types:
This = wxAuiPaneInfo()

paneBorder(This, Options :: [Option]) -> wxAuiPanelInfo()
Types.

This = wxAuiPanelInfo()

Option = {visible, boolean()}

PaneBorder indicates that a border should be drawn for the pane.

pinButton(This) -> wxAuiPaneInfo()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 47

wxAuiPanelnfo

This = wxAuiPaneInfo()

pinButton(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {visible, boolean()}

pi nBut t on/ 2 indicates that a pin button should be drawn for the pane.

position(This, Pos) -> wxAuiPaneInfo()
Types.

This = wxAuiPaneInfo()

Pos = integer()
posi ti on/ 2 determinesthe position of the docked pane.

resizable(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

resizable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

Option = {resizable, boolean()}

resi zabl e/ 2 allows a pane to be resized if the parameter is true, and forces it to be a fixed size if the parameter
isfase.

Thisissimply an antonym for f i xed/ 1.

right(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
ri ght/ 1 setsthe pane dock position to the right side of the frame.

Thisis the same thing as calling Direction(wxAUI_DOCK_RIGHT).

rightDockable(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()

rightDockable(This, Options :: [Option]) -> wxAuiPaneInfo()
Types:

This = wxAuiPaneInfo()

Option = {b, boolean()}
ri ght Dockabl e/ 2 indicates whether a pane can be docked on the right of the frame.

48 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

row(This, Row) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelInfo()

Row = integer()
r ow 2 determinesthe row of the docked pane.

safeSet(This, Source) -> ok
Types:
This = Source = wxAuiPaneInfo()
Write the safe parts of a Panelnfo object "source" into "this".

"Safe parts’ are al non-Ul elements (e.g. al layout determining parameters like the size, position etc.). "Unsafe
parts' (pointers to button, frame and window) are not modified by this write operation.

Remark: This method is used when loading perspectives.

setFlag(This, Flag, Option state) -> wxAuiPaneInfo()

Types:
This = wxAuiPaneInfo()
Flag = integer()

Option state = boolean()
set Fl ag/ 3 turnsthe property given by flag on or off with the option_state parameter.

show(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPanelInfo()

show(This, Options :: [Option]) -> wxAuiPaneInfo()
Types.

This = wxAuiPanelnfo()

Option = {show, boolean()}

show 2 indicates that a pane should be shown.

toolbarPane(This) -> wxAuiPanelInfo()
Types:
This = wxAuiPaneInfo()
t ool bar Pane/ 1 specifies that the pane should adopt the default toolbar pane settings.

top(This) -> wxAuiPaneInfo()
Types:
This = wxAuiPaneInfo()
t op/ 1 setsthe pane dock position to the top of the frame.
Thisisthe same thing as calling Direction(wxAUI_DOCK_TOP).

Ericsson AB. All Rights Reserved.: wxErlang | 49

wxAuiPanelnfo

topDockable(This) -> wxAuiPanelInfo()
Types.
This = wxAuiPaneInfo()

topDockable(This, Options :: [Option]) -> wxAuiPanelnfo()
Types:

This = wxAuiPanelInfo()

Option = {b, boolean()}
t opDockabl e/ 2 indicates whether a pane can be docked at the top of the frame.

window(This, W) -> wxAuiPaneInfo()
Types.
This = wxAuiPanelInfo()
W = wxWindow:wxWindow()
wi ndow/ 2 assigns the window pointer that the wx Aui Panel nf o should use.

Thisnormally does not need to be specified, asthe window pointer isautomatically assigned to thewx Aui Panel nf o
structure as soon asiit is added to the manager.

getWindow(This) -> wxWindow:wxWindow()
Types:
This = wxAuiPaneInfo()

getFrame(This) -> wxFrame:wxFrame()
Types:
This = wxAuiPaneInfo()

getDirection(This) -> integer()
Types.
This = wxAuiPaneInfo()

getLayer(This) -> integer()
Types:
This = wxAuiPaneInfo()

getRow(This) -> integer()
Types:
This = wxAuiPaneInfo()

getPosition(This) -> integer()
Types.

This = wxAuiPaneInfo()

getFloatingPosition(This) -> {X :: integer(), Y :: integer()}
Types:

50 | Ericsson AB. All Rights Reserved.: wxErlang

wxAuiPanelnfo

This = wxAuiPanelInfo()
getFloatingSize(This) -> {W :: integer(), H :: integer()}
Types:

This = wxAuiPaneInfo()

destroy(This :: wxAuiPaneInfo()) -> ok
Destroys the object.

Ericsson AB. All Rights Reserved.: wxErlang | 51

wxAuiSimpleTabArt

wXxAuiSimpleTabArt

Erlang module

Another standard tab art provider for wx Aui Not ebook.

wxAui Si npl eTabArt isderived fromwxAui TabArt demonstrating how to write acompletely new tab art class.
It can also be used as alternative to wx Aui Def aul t TabArt (not implemented in wx).

This classis derived (and can use functions) from: wxAui TabAr t
wxWidgets docs: wxAuiSimpleT abArt

Data Types

wxAuiSimpleTabArt() = wx:wx object()
Exports
new() -> wxAuiSimpleTabArt()

destroy(This :: wxAuiSimpleTabArt()) -> ok
Destroys the object.

52 | Ericsson AB. All Rights Reserved.: wxErlang

href

wxAuiTabArt

wxAuiTabArt

Erlang module

Tab art provider defines all the drawing functions used by wx Aui Not ebook.
This allows the wx Aui Not ebook to have a pluggable |ook-and-feel.

By default, awx Aui Not ebook uses an instance of this class called wx Aui Def aul t TabArt (not implemented in
wx) which provides bitmap art and a colour scheme that is adapted to the major platforms' look. Y ou can either derive
from that classto alter its behaviour or write a completely new tab art class.

Another example of creating a new wx Aui Not ebook tab bar iswxAui Si npl eTabArt .
Call wxAui Not ebook: set Art Provi der/ 2 to make use of this new tab art.
wxWidgets docs: wxAui TabArt

Data Types

wxAuiTabArt() = wx:wx object()

Exports

setFlags(This, Flags) -> ok
Types:
This = wxAuiTabArt()
Flags = integer()
Setsflags.

setMeasuringFont(This, Font) -> ok

Types:
This = wxAuiTabArt()
Font = wxFont:wxFont()

Sets the font used for cal culating measurements.

setNormalFont(This, Font) -> ok

Types.
This = wxAuiTabArt()
Font = wxFont:wxFont()

Sets the normal font for drawing labels.

setSelectedFont(This, Font) -> ok
Types:

This wxAuiTabArt()

Font = wxFont:wxFont()

Setsthe font for drawing text for selected Ul elements.

Ericsson AB. All Rights Reserved.: wxErlang | 53

href

wxAuiTabArt

setColour(This, Colour) -> ok
Types.
This = wxAuiTabArt()
Colour = wx:wx colour()
Sets the colour of the inactive tabs.

Since: 2.9.2

setActiveColour(This, Colour) -> ok
Types:

This = wxAuiTabArt()

Colour = wx:wx _colour()
Sets the colour of the selected tab.

Since: 2.9.2

54 | Ericsson AB. All Rights Reserved.: wxErlang

wxBitmap

wxBitmap

Erlang module

This class encapsul ates the concept of a platform-dependent bitmap, either monochrome or colour or colour with alpha
channel support.

If you need direct access the bitmap datainstead going through drawing to it using wx Merror y DC you need to use the
wxPi xel Dat a (not implemented in wx) class (either wxNativePixelData for RGB bitmaps or wxAlphaPixelData
for bitmaps with an additionally apha channel).

Note that many wx Bi t map functionstake at ype parameter, which is a value of the AvxBitmapType enumeration.
Thevalidity of those values depends however on the platform where your program is running and from the wxWidgets
configuration. If all possible wxWidgets settings are used:

In addition, wxBi t map can load and save all formats that wx| mage can; see wx| mage for more info. Of course,
you must have loaded the wx| nage handlers (see 2wxInitAlllmageHandlers() and wx| mage: : AddHandl er (not
implemented in wx)). Note that all available wxBitmapHandlers for a given wxWidgets port are automatically loaded
at startup so you won't need to use wx Bi t map: : AddHandl er (not implemented in wx).

More on the difference between wx | nage and wxBi t nap: wx| mage isjust abuffer of RGB byteswith an optional
buffer for the apha bytes. It is al generic, platform independent and image file format independent code. It includes
generic codefor scaling, resizing, clipping, and other manipulations of theimage data. OTOH, wxBi t map isintended
to be awrapper of whatever isthe native image format that is quickest/easiest to draw to aDC or to be the target of the
drawing operations performed on awx Menor y DC. By splitting the responsibiliti es between wxImage/wxBitmap like
this then it's easier to use generic code shared by all platforms and image types for generic operations and platform
specific code where performance or compatibility is needed.

Predefined objects (include wx.hrl): 2wxNullBitmap

See: Overview bitmap, Overview bitmap, wxDC: bl i t/ 6, wxl con, wxCur sor , wxMenor yDC, wx| nage,
wx Pi xel Dat a (not implemented in wx)

wxWidgets docs: wxBitmap

Data Types

wxBitmap() = wx:wx object()

Exports

new() -> wxBitmap()
Default constructor.

Constructs a bitmap object with no data; an assignment or another member function such as create/ 4 or
| oadFi | e/ 3 must be called subsequently.

new(Name) -> wxBitmap()
new(Sz) -> wxBitmap()
new(Img) -> wxBitmap()
Types:

Ericsson AB. All Rights Reserved.: wxErlang | 55

href
href
href

wxBitmap

Img = wxImage:wxImage() | wxBitmap:wxBitmap()

new
new

Width, Height) -> wxBitmap()
Name, Height :: [Option]) -> wxBitmap()

—~ o~~~

new(Sz, Height :: [Option]) -> wxBitmap()
new(Img, Height :: [Option]) -> wxBitmap()
Types:

Img = wxImage:wxImage()
Option = {depth, integer()}
Creates this bitmap object from the given image.
This hasto be done to actually display an image as you cannot draw an image directly on awindow.

The resulting bitmap will use the provided colour depth (or that of the current system if depth is ?
WXBITMAP_SCREEN_DEPTH) which entails that a colour reduction may take place.

On Windows, if there is a palette present (set with SetPalette), it will be used when creating the wxBi t map (most
useful in 8-bit display mode). On other platforms, the palette is currently ignored.

new(Bits, Width, Height) -> wxBitmap()
new(Width, Height, Height :: [Option]) -> wxBitmap()
Types:

Width = Height = integer()

Option = {depth, integer()}

Creates a new bitmap.

A depth of AwxBITMAP_SCREEN_DEPTH indicates the depth of the current screen or visual.

Some platforms only support 1 for monochrome and wxBITMAP_SCREEN_DEPTH for the current colour setting.
A depth of 32 including an alpha channel is supported under MSW, Mac and GTK+.

new(Bits, Width, Height, Options :: [Option]) -> wxBitmap()
Types.

Bits = binary()

Width = Height = integer()

Option = {depth, integer()}

Creates a bitmap from the given array bi t s.

You should only use this function for monochrome bitmaps (depth 1) in portable programs: in this case the bits
parameter should contain an XBM image.

For other bit depths, the behaviour is platform dependent: under Windows, the data is passed without any changes
to the underlying CreateBitmap() API. Under other platforms, only monochrome bitmaps may be created using this
constructor and wx | mage should be used for creating colour bitmaps from static data.

destroy(This :: wxBitmap()) -> ok
Creates bitmap corresponding to the given cursor.
This can be useful to display a cursor as it cannot be drawn directly on awindow.

This constructor only existsin wxMSW and wxGTK (whereit isimplemented for GTK+ 2.8 or later) only.

56 | Ericsson AB. All Rights Reserved.: wxErlang

wxBitmap

Since: 3.1.0 Destructor. See overview_refcount_destruct for more info.

If the application omitsto delete the bitmap explicitly, the bitmap will be destroyed automatically by wxWidgetswhen
the application exits.

Warning: Do not delete a bitmap that is selected into a memory device context.

convertToImage(This) -> wxImage:wxImage()
Types.

This = wxBitmap()
Creates an image from a platform-dependent bitmap.

This preserves mask information so that bitmaps and images can be converted back and forth without loss in that
respect.

copyFromIcon(This, Icon) -> boolean()

Types.
This = wxBitmap()
Icon = wxIcon:wxIcon()

Creates the bitmap from an icon.

create(This, Sz) -> boolean()
Types:
This = wxBitmap()
Sz = {W :: integer(), H :: integer()}

create(This, Width, Height) -> boolean()
create(This, Sz, Height :: [Option]) -> boolean()
Types.

This = wxBitmap()

Sz = {W :: integer(), H :: integer()}

Option = {depth, integer()}

This is an overloaded member function, provided for convenience. It differs from the above function only in what
argument(s) it accepts.

create(This, Width, Height, Options :: [Option]) -> boolean()
create(This, Width, Height, Dc) -> boolean()
Types:
This = wxBitmap()
Width = Height =
Dc = wxDC:wxDC()
Create a bitmap compatible with the given DC, inheriting its magnification factor.

integer()

Return: true if the creation was successful.
Since: 3.1.0

Ericsson AB. All Rights Reserved.: wxErlang | 57

wxBitmap

getDepth(This) -> integer()
Types:
This = wxBitmap()
Gets the colour depth of the bitmap.
A value of 1 indicates a monochrome bitmap.

getHeight(This) -> integer()
Types:
This = wxBitmap()
Gets the height of the bitmap in pixels.
See:get Wdt h/ 1, Get Si ze() (notimplemented in wx)

getPalette(This) -> wxPalette:wxPalette()
Types:
This = wxBitmap()
Gets the associated palette (if any) which may have been loaded from afile or set for the bitmap.
See: wxPa